导数公式表
的有关信息介绍如下:导数公式表包括了一系列基本初等函数的导数公式和一些常见的导数运算法则。以下是各个基本初等函数的导数公式:常数函数:y=cy = cy=c,导数为 y′=0y' = 0y′=0。幂函数:y=xny = x^ny=xn,导数为 y′=nxn−1y' = nx^{n-1}y′=nxn−1。指数函数:y=axy = a^xy=ax,导数为 y′=axlnay' = a^x \ln ay′=axlna;y=exy = e^xy=ex,导数为 y′=exy' = e^xy′=ex。对数函数:y=logaxy = \log_a xy=logax,导数为 y′=1xlnay' = \frac{1}{x \ln a}y′=xlna1;y=lnxy = \ln xy=lnx,导数为 y′=1xy' = \frac{1}{x}y′=x1。三角函数:y=sinxy = \sin xy=sinx,导数为 y′=cosxy' = \cos xy′=cosx;y=cosxy = \cos xy=cosx,导数为 y′=−sinxy' = -\sin xy′=−sinx;y=tanxy = \tan xy=tanx,导数为 y′=1cos2xy' = \frac{1}{\cos^2 x}y′=cos2x1;y=cotxy = \cot xy=cotx,导数为 y′=−1sin2xy' = -\frac{1}{\sin^2 x}y′=−sin2x1。反三角函数:y=arcsinxy = \arcsin xy=arcsinx,导数为 y′=11−x2y' = \frac{1}{\sqrt{1 - x^2}}y′=1−x21;y=arccosxy = \arccos xy=arccosx,导数为 y′=−11−x2y' = -\frac{1}{\sqrt{1 - x^2}}y′=−1−x21;y=arctanxy = \arctan xy=arctanx,导数为 y′=11+x2y' = \frac{1}{1 + x^2}y′=1+x21;y=\arccotxy = \arccot xy=\arccotx,导数为 y′=−11+x2y' = -\frac{1}{1 + x^2}y′=−1+x21。双曲函数:y=sinhxy = \sinh xy=sinhx,导数为 y′=coshxy' = \cosh xy′=coshx;y=coshxy = \cosh xy=coshx,导数为 y′=sinhxy' = \sinh xy′=sinhx;y=tanhxy = \tanh xy=tanhx,导数为 y′=1cosh2xy' = \frac{1}{\cosh^2 x}y′=cosh2x1。此外,还有一些常见的导数运算法则:加法法则:(f(x)+g(x))′=f′(x)+g′(x)(f(x) + g(x))' = f'(x) + g'(x)(f(x)+g(x))′=f′(x)+g′(x)。乘法法则:(f(x)⋅g(x))′=f′(x)⋅g(x)+f(x)⋅g′(x)(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)(f(x)⋅g(x))′=f′(x)⋅g(x)+f(x)⋅g′(x)。除法法则:(f(x)/g(x))′=(f′(x)⋅g(x)−f(x)⋅g′(x))/(g(x))2(f(x) / g(x))' = (f'(x) \cdot g(x) - f(x) \cdot g'(x)) / (g(x))^2(f(x)/g(x))′=(f′(x)⋅g(x)−f(x)⋅g′(x))/(g(x))2。这些公式和法则在求解复合函数的导数时非常有用。